ID-MS Based Reference Measurement Method for Small Analytes: Vitamin D, Creatinine, Glucose, Cholesterol and Amino acids

Mine Bilsel, Simay Gündüz, Hasibe Yılmaz, Gökhan Bilsel, İlker Ün and Ahmet Ceyhan Gören TUBITAK UME

29 October 2019, Antalya

- Isotope dilution mass spectrometry (IDMS) has become common with the increased use of Mass Spectrometry
- We need to use Internal Standard (IS) because Mass Spectrometry response changes
- We use labeled standards like ¹³C or deuterium

- A known amount of an isotopically-enriched version of compound is added to the matrix containing the compound of interest
- Mixing the isotopic standard with the sample dilutes the isotopic enrichment of the standard and this forms the basis for the ID method
- Unlike traditional analytical methods which rely on signal intensity, isotope dilution employs signal ratios

The ratio of the quantity of unlabeled to labeled compound can be measured, and the concentration then can be determined

Concentration of Phe present in matrix(plasma) is determined in part by the ratio of the ion intensity of the Phe to ${}^{13}C_{6}$ -Phe

- It is regarded as primary method
- Primary measurement methods, which are traceable to International System of Units like IDMS, provide a viable alternative to estimate true value
- A Primary Method is a method having the highest metrological quality and a complete uncertainty statement can be written down in terms of SI units
- IDMS compensates for errors at all stages of the analysis, from sample preparation to instrument measurement

 Response factor is calculated and used to determine the mass fraction of the analyte in the sample

$$RF = \frac{A_x x C_{IS}}{A_{IS} x C_x}$$

- RF Response factor
- C_x Conc of native cpd
- A_x Peak area of native
- A_{IS} Peak area of labeledC_{IS} Conc of Labeled cpd

Reference Methods for Markers in Blood/Urine

CCQM-K132/P169

Low Polarity Analytes in a Biological Matrix: Vitamin D Metabolites in Human Serum

Serum Pool I: High level of 25(OH)D₃

- $25(OH)D_3 = 30 \text{ ng/g} 50 \text{ ng/g}$
- $25(OH)D_2$ = about 50x lower than $25(OH)D_3$
- $3-epi-25(OH)D_3 = typically < 10\% of 25(OH)D_3 level$

Serum Pool II: Normal level of 25(OH)D₃ with higher than normal level of 25(OH)D₂

- $25(OH)D_3 = 15 \text{ ng/g} 30 \text{ ng/g}$
- $25(OH)D_2 = 1 \text{ ng/g} 10 \text{ ng/g}$
- $3-epi-25(OH)D_3 = typically < 10\% of 25(OH)D_3 level$

Zivak Tandem Gold LC-MS/MS		
Technique	APCI	
Column	Reprosil Fluosil PFP 150 x 2 mm id x 3µm particle size	
Mobile phase	78% MEOH : 22% Water + 0.1% Formic Acid	
Flow	0.3 mL/ min	
Mode	Isocratic	

MS Setting	
Dry gas temp	300°C
Vaporizer gas temp	350°C
Drying gas pressure	20psi
Nebulizing gas pressure	55psi
Vaporizer gas pressure	2psi
Detector	600V
CID gas pressure	2.4mTorr

Analyte	Parent (<i>m/z</i>)	Daughter (<i>m/z</i>)
25-Hydroxy Vitamin D ₂	395.3	269.3
25-Hydroxy Vitamin D_3	383.3	257.3
3- <i>epi</i> -25-Hydroxy Vitamin D ₃	383.3	257.3
IS(D6-25-Hydroxy Vitamin D_3)	389.3	263.3

Internal Standard	Calibrant	Calibration Type
d ₆ -25(OH)D ₃	UME CRM 1308 and Nist SRM 2972a	Single point

Serum Pool I				
Measurand	Mass Fraction (ng/g)	Expanded Uncertainty (ng/g)		
25(OH)D2	0.50	0.03		
25(OH)D3	37.82	2.71		
3-epi-25(OH)D3	2.02	0.13		

Serum Pool II		
Measurand	Mass Fraction (ng/g)	Expanded Uncertainty (ng/g)
25(OH)D2	6.05	0.36
25(OH)D3	25.84	1.84
3-epi-25(OH)D3	1.48	0.09

Uncertainty Contributions

Uncertainty budget of	of White cap D3			
		Value	u(x)	u(x)/x
Weighing of sample (mg)	406	8.16E-04	2.01E-06
Weighing of IS (mg)		305.64	1.39E-03	4.56E-06
Recovery		1	3.55E-02	3.55E-02
Repeatability		100	4.72E-01	4.72E-03
Labelled stock solution	Labelled stock solution (ng/g)		1.32E-04	2.63E-06
				3.58E-02
Result (ng/g)	37.82			
Combined uncertaint	у	1.35		
Expanded uncertainty		2.71		
% Relative uncertainty		7.16		
% Relative standard ι	incertainty	3.58		

CCQM-K12.2

Determination of Creatinine in Human Serum

Creatinine (molar mass 113 g/mol) is a polar analyte ($pK_{ow} = 1.76$) that is present in human serum at relatively low concentrations (1 µg/g to 30 µg/g).

Zivak Tandem Gold LC-MS/MS			
Technique	ESI		
Column	Reprosil-Por RP 18-NE 3um 75 x 4mm		
Mobile phase	75% methanol and 25% of 10 mmol/L ammonium acetate containing 0.4% formic acid (v/v)		
Flow	0.5 mL/min		
Mode	Isocratic		

Analyte	Parent (<i>m/z</i>)	Daughter (<i>m/z</i>)	Collision Energy (V)	Capillary
Creatinine	114	44	15	100
Creatinine d3	117	47	15	100

Internal Standard	Calibrant	Calibration Type
Creatinine d3 Nist SRM 967a		Single point

Sample results	Mass Fraction (µg/g)	Combined Standard Uncertainty (µg/g)	Coverage Factor (k)	Expanded Uncertainty (µg/g)
Sample 1	7.47E+00	3.73E-02	2	7.45E-02
Sample 2	7.48E+00	3.87E-02	2	7.74E-02

Parameter	Value(X)	u(x)	u(x)/X
Mass of sample (mg)	5.01E+01	1.72E-06	3.43E-08
Mass of labelled std	9.25E+00	5.92E-08	6.40E-09
Labelled stock solution (mg/kg)	5.00E+01	3.09E-02	6.19E-04
Mass of calibration standard level 1 (mg)	4.89E+01	1.67E-06	3.41E-08
Method Precision	1.00E+02	4.19E-01	4.19E-03
Instrument repeatability	1.00E+02	2.63E-01	2.63E-03
Relative Combined Uncertainty			4.99E-03
Result (µg/g)	7.47E+00		
Combined Standard Measurement Uncertainty		3.73E-02	
Expanded Uncertainty (k=2)		7.45E-02	
Relative Uncertainty		9.97E-01	

CCQM-K11.2

Determination of Glucose in Human Serum

Glucose (molar mass 180 g/mol) is a polar analyte ($pK_{ow} = 2.82$), highly water-soluble (909 g/L) analyte that is present in human serum at relatively high concentrations (0.5 mg/g to 1.5 mg/g).

Participants were requested to analyze two vials of material for each analyte.

Zivak Tandem Gold LC-MS/MS

Technique	ESI-ve
Column	Luna 5µ NH2 100 A° 250 X 2 mm
Mobile phase	A:5 mmol ammonium formate in 0.05% formic acid, B: acetonitrile (A:20:B 80 by vol)
Flow	0.2 mL/min
Mode	Isocratic

Internal Standard	Calibrant	Calibration Type
13C6 D- Glucose	SRM 965 b Glucose in frozen Human	3 point calibration

Analyte	Parent	Daughter	Collision Energy	Capillary
	(<i>m/z</i>)	(<i>m/z</i>)	(V)	
Glucose	224.7	88.7	12	100
13C6 D-Glucose	230.7	91.7	12	100

Uncertainty Parameters

Mass of sample Mass of labelled std Labelled stock solution Uncertainty of calibration standard level 2 Uncertainty of calibration standard level 3 Uncertainty of calibration standard level 4 Method Precision Instrument repeatability Calibration curve

Parameter	Value(X)	u(x)	u(x)/X
Mass of sample (mg)	3.02E+02	6.22E-05	2.06E-07
Mass of labelled std(mg)	9.79E+01	6.55E-06	6.69E-08
Labelled stock solution (mg/kg)	1.00E+03	9.72E-06	9.72E-09
Uncertainty of calibration standard level 2 (mg)	3.01E+02	6.19E-05	2.06E-07
Uncertainty of calibration standard level 3 (mg)	3.03E+02	6.27E-05	2.07E-07
Uncertainty of calibration standard level 4 (mg)	3.03E+02	6.26E-05	2.07E-07
Method Precision	1.00E+02	1.39E-01	1.39E-03
Instrument repeatability	1.00E+02	1.73E-01	1.73E-03
Calibration curve	1.16E+00	6.44E-03	5.56E-03
Relative Combined Uncertainty			5.99E-03
Result (mg/g)	1.16E+00		
Combined Standard Measurement Uncertainty		6.94E-03	
Expanded Uncertainty (k=2)		1.39E-02	
Relative Uncertainty		1.20E+00	

CCQM-K6.2

Determination of Cholesterol in Human Serum

Cholesterol(molar mass 365g/mol) is a low polarity analyte that is present in human serum at relatively high concentration(1 mg/g to 3 mg/g). Cholesterol is predominantly esterified with fatty acids in the blood

The study material for CCQM-K6.2 was candidate SRM 1951c Lipids in Frozen Human Serum (Level 2), which was prepared as a replacement for SRM 1951b Lipids in Frozen Human Serum.

Participants were provided with three vials of serum for the determination of cholesterol. Each vial contained 1 mL of human serum.

Zivak Tandem Gold LC-MS/MS			
Technique	APCI		
Column	Kinetex 2.6u C18 100A 100 mm 2.10 mm		
Mobile phase	Isocratic mode ;acetonitrile and methanol (80:20 by vol)		
Flow	0.25 mL/min		
Mode	Isocratic		

Analyte	Parent	Daughter	Collision	Capillary
	(<i>m/z</i>)	(<i>m/z</i>)	Energy (V)	
Cholesterol	369	161	12	20
[25,26,27-13C3] Cholesterol	372	161	12	20

Internal Standard	Calibrant	Calibration Type
25,26,27-13C3 Cholesterol	Nist SRM 968e	2 point calibration

968e Fat Soluble Vitamins, Carotenoids, and Cholesterol in Human Serum -Two level concentration were used for calibration

Sample results	Mass Fraction (mg/g)	Combined Standard Uncertainty (mg/g)	Coverage Factor (k)	Expanded Uncertainty (mg/g)
Sample 1	2.27E+00	3.09E-02	2	6.19E-02
Sample 2	2.31E+00	3.30E-02	2	6.60E-02

MS

CCQM_sample3_sr m 22012013 4

GC IDMS method were used for conformation

80-

GC Column : DB-1, 30 m x 0.25 mm x 0,10 μm

	Rate (ºC/min)	Temp (⁰C)	Hold Time
İnitial		60	1.00
Ramp 1	10	300	5.00

0-25.6 22.8 23.0 23.2 23.4 23.6 23.8 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 Time (min)

Uncertainty Parameters Used

- Mass of sample
- Mass of labelled std
- Labelled stock solution
- Uncertainty of calibration standard level 2
- Uncertainty of calibration standard level 3
- Method Precision
- Instrument repeatability
- Calibration curve

Parameter	Value(X)	u(x)	u(x)/X
Mass of sample (mg)	2.05E+02	2.86E-05	1.40E-07
Mass of labelled std(mg)	7.57E+01	3.91E-06	5.17E-08
Labelled stock solution (mg/kg)	4.00E+03	8.30E-03	2.08E-06
Uncertainty of calibration standard level 2 (mg)	2.07E+02	2.93E-05	1.41E-07
Uncertainty of calibration standard level 3 (mg)	2.06E+02	2.91E-05	1.41E-07
Method Precision	1.00E+02	1.89E-01	1.89E-03
Instrument repeatability	1.00E+02	1.77E-01	1.77E-03
Calibration curve	2.27E+00	3.04E-02	1.34E-02
Relative Combined Uncertainty			1.37E-02
Result (mg/g)	2.27E+00		
Combined Standard Measurement Uncertainty		3.09E-02	
Expanded Uncertainty (k=2)		6.18E-02	
Relative Uncertainty		2.73E+00	

CCQM-K78.a

Amino acids in acidic solution

Study Material

Standard solution in 0.01 N HCl containing,

- > phenylalanine (Phe)
- ➢ leucine (Leu)
- ➤ isoleucine (IIe)
- ➢ proline (Pro)
- 0.1 gram sample was diluted with 0.01 N HCl (aq) gravimetrically
- The analytes were derivatized with propyl chloroformate

Proline (Pro)

Thermo Scientific Q Exactive, Orbitrap LC/MS

Column: Phenomenex EZ:fast 4u AAA-MS(250 x 2.0 mm i.d.)

AS; Injection volume $: 2 \ \mu L$

Column temperature : 40 °C

Flow rate (mL/min) : 0.250

: A: MeOH: H2O (0.01 M ammonium formate) (1:1) B: MeOH (0.01 M ammonium formate)

Run length (min) : 22.0

Mobile phase

Amino acids	Parent lons	Daughter lons
Phenylalanine, derivatized	294	168
Phenylalanine, IS, derivatized	299	198
Leucine, derivatized	260	184
Leucine, IS, derivatized	261	184
Isoleucine, derivatized	260	186
Isoleucine, IS derivatized	261	183
Proline, derivatized	244	152
Proline, IS derivatized	245	152

Retention time (min)	Flow (mL/min)	Α%	В %
0.00	1.00	65	35
0.00	1.00	65	35
12.00	1.00	45	55
12.01	1.00	20	80
15.00	1.00	20	80
15.01	1.00	00	100
17.00	1.00	00	100
17.01	1.00	65	35
22.00	1.00	65	35

Internal standards used

L-phenylalanine (Ring-D5, 98%) Cambridge Isotope Laboratories

L-leucine (1-13C, 99%) Cambridge Isotope Laboratories

L-isoleucine (15N, 98%) Cambridge Isotope Laboratories

L-proline (15N, 98%) Cambridge Isotope Laboratories

Measurand	Mass Fraction (Average, reported value for CCQM K78a)(µg/g)	Mass Fraction (LC- MS)(µg/g)	Mass Fraction (qNMR)(μ g/g)	Combined Standard Uncertainty (µg/g)	Coverage Factor (k)	Expanded Uncertainty (µg/g)
Phenylalanine						
(Phe)	482.59	482.94	482.24	3.60	2	7.20
Leucine (Leu)	200.64	197.49	203.78	1.62	2	3.24
Isoleucine (Ile)	218.98	219.98	217.97	3.50	2	7.00
Proline (Pro)	47.24	47.94	47.10	0.81	2	1.62

Uncertainty budget of Leu (LC-MS)									
				Value	u(x)	u(x)/x			
Weighing of sample (mg)				25	1,47E-04	5,88E-06			
Weighing of IS (mg)				25	1,57E-05	6,28E-07			
Standard stock solution (mg/g)				2500	5,02E+00	2,01E-03			
Internal stock solution (mg/g)				2500	7,65E+00	3,06E-03			
Intermediate precision				100	1,58E-01	1,58E-03			
Recovery				100	5,44E-03	5,44E-05			
Repeatability				100	1,95E-01	1,95E-03			
Calibration graph				1,8	1,22E-02	6,75E-03			
						8,08E-03			
Result (mg/g)		197,49							
Combined uncertainty				1,60					
Expanded uncertainty				3,19					
% Relative uncertainty				1,62					
% Relative standard uncertainty				0,81					

IDMS is superior to other analytical procedures concerning

- High Trueness together with small uncertainty
- Matrix independent
- Losses of analyte do not affect the accuracy of the result
- SI traceability
- IDMS enhances the accuracy of measurements, especially in difficult sample matrix

Primary Method

Highest Metrological Quality

